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J. Phys. A: Math. Gen. 14 (1981) 957-970. Printed in Great Britain 

Quasihydrodynamic theory of ionic conductance in spatially 
homogeneous solutions of strong electrolytes? 

A R Altenberger 

Institute of Physical Chemistry of the Polish Academy of Sciences, 01-224 Warsaw, Poland 

Received 8 May 1980, in final form 6 August 1980 

Abstract. A generalised formulation of the quasihydrodynamic theory of ionic conductance 
in an electrolyte solution is presented. Correlation function expressions are derived for the 
contributions of the frequency-dependent relaxation effect to the conductivity and dielec- 
tric permittivity of the electrolyte solution. The evolution equation for the time-dependent 
irreducible ionic pair correlation function is derived in the mean field approximation by the 
application of the generating functional method. 

1. Introduction 

Fundamental physical ideas of the quasihydrodynamic theory of transport processes in 
spatially homogeneous electrolyte solutions were set forth by Debye and Huckel 
(1923), Onsager (1926,1927), Debye and Falkenhagen (1928) and Onsager and Fuoss 
(1932). These authors proposed a Brownian particle model of an electrolyte solution in 
which charged, solvated ionic particles are moving in the continuous medium formed by 
the molecules of the solvent. Their approach was of a mean field type. The internal 
electric field acting on the ions was calculated from the Poisson equation, and in a more 
advanced version of the theory (Resibois and Hasselle-Schuermans 1966) a similar 
mean field approach was also used to describe the effects of interionic hydrodynamic 
interactions. The theory worked well at very low electrolyte concentrations, but its 
extension to regions of higher concentration proved to be difficult. This could be caused 
partially by the primitiveness of the model, and most recent formulations of the theory 
(Fuoss and Onsager 1962, 1963, 1964, Pitts 1953, Pitts et a1 1969, 1970, Murphy and 
Cohen 1970) dealt mainly with the problem of proper inclusion of the excluded volume 
effects which result from the presence of the short-range repulsion between the ions. 
More recently also an alternative, ‘global’ approach to the problem was introduced by 
Strelzova (1957, 1959, 1962), Falkenhagen and Ebeling (1966) and Ebeling et a1 
(1978) in which a multiparticle equation was applied for the description of the ionic 
diffusion. This later approach allows us in principle to derive the equations of evolution 
for the reduced position distribution functions of the ionic particles, and thus to analyse 
conditions under which the older mean field theory was valid. Also, inclusion of other 
than Coulombic forces became possible. The aim of the present paper is to suggest a 
new form of the ‘global’ approach to the problem of ionic conductivity in spatially 
homogeneous solutions. Applying linear response theory, we are able to derive a most 
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general, correlation function type expression for the frequency-dependent ionic 
conductivity and dielectric permittivity of the electrolyte solution, which can be 
obtained within the framework of the quasihydrodynamic theory. In the next section 
the derivation of the correlation function formula for the contribution of the relaxation 
effect to the ionic conductivity is given. Section 3 is devoted to the problem of 
derivation of the evolution equations for the irreducible ionic correlation functions, and 
8 4  to the analysis of the mean field approximation. In the last section a general 
discussion of results is given. 

2. Linear response theory and the Smoluchowski equation 

Let us consider a dilute multicomponent electrolyte solution consisting of s ionic 
species. Since the solution is neutral we have 

(2.1) Q ( a ) c ( a ) = O  

a = l  

where Q'"' is the ionic charge belonging to the ath ionic component and c ' ~ )  is the 
number concentration of the species. We assume that the solution was in thermal 
equilibrium prior to the application of the spatially homogeneous electric field E ( t )  = 
Re Eo exp(iwt) in the infinite past. According to the standard hydrodynamic model, the 
ions are treated as Brownian particles moving in an unbounded continuous medium. 
The motion of ions under the influence of the external field is correlated due to their 
mutual interaction. The position distribution function of all ions in the system is 
determined by the multiparticle Smoluchowski diffusion equation, which in the linear 
response approximation can be expressed in the following form: 

( 2 . 2 )  &P((R'Y'}, t )  = S((R'Y'})P + SeXt({R(Y)}, t)P"q({R'Y'}). 

P({R""}, t )  is the time-dependent position distribution function of all the ionic particles, 
Peq({R'y'}) is the appropriate equilibrium distribution, we denote by {R "} a complete 
set of all the position vectors of the ionic particles and S({R""}) is the unperturbed part 
of the Smoluchowski diffusion operator which can be expressed in the form 

Where kT is the Boltzmann factor, N'"' is the number of ionic particles of the cvth 
species, Fim) is the force acting on the ith ion belonging to the cvth species, 

and Q!;''') is the interionic force which includes both Coulombic and short-range 
interactions. By Dj;)") we denote the diffusion tensor whose form depends on the 
assumed model of the hydrodynamic interaction between the medium and Brownian 
particles (see e.g. Felderhof 1977, 1978). If one treats an ion as a point source of the 
friction force (as we do in the remaining part of this paper), this tensor can be expressed 
by the well known Kirkwood formula 

D!;"" = kT[(l/['")S,,Sj,I+ (2 .5 )  
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where 5'"' is the ionic friction coefficient and T$"" is the Oseen tensor of the 
hydrodynamic interaction, 

qo is the solvent viscosity. 
The perturbation part of the equation (2.2) can be expressed in the form 

sex' ( {RY} ,  t)P"q({R'Y'}) 

The method of derivation of the Smoluchowski diffusion equation and its limitations 
are well known. In the present paper we restrict ourselves to the theory of electrolytic 
conductance in a low-frequency external field fulfilling the conditions 

<< 5(a ' /m(o)  (2.8) 

(2.9) 

where m'"' is the mass of an ion belonging to the ath species, vo is the kinematic 
viscosity of the solvent and x2 is the inverse of the square of the Debye length, 

and 
2 w << vox 

(2.10) 

where 
Condition (2.8) ensures that the inertial effects of the ionic motion can be neglected, 

and (2.9) allows us to neglect inertial effects related to the hydrodynamic interaction 
between the ionic particles. Since here we also neglect the dielectric dispersion of the 
solvent, the external field frequency should be kept in the region in which this effect 
does not contribute. Usually, for a dilute aqueous solution containing small inorganic 
ions, [(a) /m(a'  is of order 1013Hz and vox2 is of order lo1' Hz. The dielectric 
dispersion of the solvent appears at about 10'l Hz. Since most of the conductivity 
measurements are performed in the range 102-104 Hz, conditions (2.8) and (2.9) are 
very well satisfied and the dielectric dispersion of the solvent can also be neglected. It 
should also be mentioned here that, following a standard approach to the theory of ionic 
conduction (see e.g. Falkenhagen 1971), we have neglected all 'electrode effects', such 
as concentration polarisation of electrodes, double layer formation and specific 
adsorption, which would lead in principle to the appearance of spatial inhomogeneities 
in the ionic distribution in the immediate neighbourhood of the electrodes. 

is the dielectric permittivity of the solvent. 

The scalar electric current density is defined by the relation 

V J  a.i 
(2.11) 
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where E is the versor of the external field (I? = Eo/Eo) ,  j ia '  is the particle current given 
by 

(2.12) 

and Sd{R'"}. . . means integration over all position variables. V is the volume of the 
system. 

The generalised Ohm law for our problem can be expressed in the form (see e.g. 
Silin and Rukhathe 1961, Ebeling 1964, Falkenhagen 1971) 

i ( t )  = dt' g ( t -  t ' ) E ( t ' )  II, (2.13) 

where a(t)  is the scalar conductivity and E ( t )  is the time-dependent magnitude of the 
external field acting on ions immersed in the solvent. Using the formal solution of 
equation (2), we obtain 

a(t)  = ((Tid+ael)g(t)+(T'" '( t)  (2.14) 

where 

(2.15) 

is the conductivity of non-interacting ions, 

J dR I?. T ( R )  . I?(gk",""(R) - 1) (2.16) (Tef = 1 Q ( ~ ) ~ ( ~ ) Q ( P ) ~ ( P )  

% P  

is the electrophoretic correction and 

d{R'"'}I(O) e"I(0)P"q({R'Y'}) kT V 

where 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

is the contribution of the relaxation effect to the conductivity. 
It should be noted here that our definition of the relaxation effect contribution 

differs from that which is used by Ebeling et a1 (1978). These authors tend to classify all 



Quasihydrodynamic theory of ionic conductance 96 1 

terms involving the hydrodynamic interaction tensor as an electrophoretic contribu- 
tion. In our opinion, the relaxation effect manifests as a time-dependent perturbation 
of the interionic irreducible correlation functions, which can be more visually inter- 
preted as a time-dependent distortion of the ionic atmosphere around a given ion. It is 
not important which type of interaction (direct or direct and hydrodynamic) contributed 
to this effect. Ebeling and collaborators studied only the response to a static external 
field, and did not use the correlation function formalism in which the difference between 
the time-dependent and static contributions to the conductivity is more clearly 
pronounced. 

By gZ””(R) we denote in the expression (2.16) the equilibrium interionic pair 
distribution function, and by the operator S* in (2.17) the adjoint to the Smoluchowski 
operator (2.3) which is defined by 

s* . . * = ( P e y s P e q  . . . . (2.21) 

Equations (2.13) and (2.14), which describe the generalised Ohm law for our 
system, mean that in the frequency range considered in this paper the response of the 
electric current to the external field is not immediate. The presence of the finite 
relaxation time of the ionic atmosphere leads to the appearance of the ‘delay’ effect. 
This effect can be observed in the form of the frequency dispersion of the conductivity 
which appears at the external field frequencies of order w Cc x2D. The coefficient D is 
the relative diffusion coefficient, and x*D is roughly equal to the inverse of the 
relaxation time of the ionic atmosphere. It is also possible to introduce an effective, 
time-dependent dielectric permittivity of the electrolyte solution. The dielectric 
permittivity can be defined by the relation between the magnitude of the external field 
and the charge surface density on the plates of electrodes: 

Since the surface charge density satisfies the relation 

(2.23) 

we also have the following well known relation between the dielectric permittivity of the 
electrolyte solution and its conductivity: 

(2.24) 

The linear response to the periodic external field E ( t )  = E” exp(iwt) leads to the 
relations 

i ( t )  = Rea(w)E( t ) ,  (2.25) 

4 0 )  = (1/4T) Re E ( W ) E ( f ) ,  (2.26) 

where a ( w )  and E ( W )  are the Fourier-Laplace transforms of a(t)  and E ( t )  defined by 

dt exp(-iwt)a(t), 

.cc 

(2.27) 

E ( @ )  = J dt  exp(-iwt)E(t). 
0 

(2.28) 
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From the previous results it follows that the conductivity of the system is characterised 
by 

(2.29) 

and the dielectric properties by 

Re a ( w )  = aid + vel+ Re are1 (w)  

Re € ( U )  = eo+ (4 . r r lw)  Im a r e l ( w )  (2.30) 

where are ' (w) is given by 

re1 -1 1 
a ( w )  = - - dt ( I (0) I ( t ) )eq  e-iwr, kT v Io (2.31) 

I ( t )  = exp(tS*)I(O), (2.32) 

and the bracket denotes averaging over the complete ionic equilibrium distribution 
function. 

The correlation function expressions for the frequency-dependent conductivity and 
dielectric permittivity of the electrolyte solution are the first (as far as we are aware) to 
have been proposed in the quasihydrodynamic theory of electrolytic conductivity. By 
the application of linear response theory, we obtained a very convenient, general 
expression for the contribution of the relaxation effect to the complex conductivity 
whose determination is a central problem of the theory. Though there is little hope of 
calculating the time correlation function directly from the definition (2.3 l), the formula 
can be used as a startingpoint for some approximation methods which are now very well 
developed in nonAequilibrium statistical mechanics. 

The expression (2.17),can also be considered as a non-equilibrium average 

are'(t) = -- d{R")}P'({R'')}, t)I(O) (2.33) V 'I 
where P'( t )  is the solution of the unperturbed Smoluchowski equation 

a,P'(t) = SP'( t )  (2.34) 

with the initial condition P'(0)  = I ( 0 ) P e q ( l / k T ) .  Taking into account the identity of 
ionic particles, we can express (2.33) as a sum of two terms, 

/ ( t )  = (T;el(t)+ajel(t), (2.35) 

which involve respectively two- and three-particle correlations 

-(Q'"'- Q ' p ' ) k .  T ( r )  . a(")'@) (2.36) 

( ~ y l ( t )  = - 1 c'"'Q' c c dr  dr '  E, T(r-r ') , ~'P)(r)(rr)8h(a)(" 'v)  (r, r', t i .  

(2.37) 

By8h(")(Pj(t)and a h ( " ) ( O ! ( y )  ( t )  we denote the linear perturbations of the irreducible pair 
and triple ionic correlation functions related to the function P'( t ) .  This is an important 
result. In the first place it indicates that the conductivity is not only related to the pair 
correlations, as was always assumed in the Debye-Onsager-Falkenhagen theory, but 

a,P,r '?) I I "' 
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that it also involves triple ionic correlations. Besides, it suggests a possible method of 
calculation of the relaxation effect contribution-through the solution of the linearised 
evolution equations for the ionic irreducible correlation functions. 

3. The dynamics of ionic correlations 

The reduced generic distribution functions of ionic species can be conveniently defined 
with the help of generating functionals introduced by Bogoliubov (1962). If we define 
the functional A ( t ;  {U'"})  by 

(3.1) 
J u = l  i = l  

where u ( a ' ( R )  are arbitrary regular functions, then the reduced distribution functions 
are defined by 

For a spatially homogeneous system we have 

~ ( o ) ( R ,  t )  = c ( ~ ) ,  (3.3) 

(RI, . . , , R,, t )  = fi c('~)g(u+Jam) (RI, . , R n ,  t ) ,  (3.4) 
i = l  

P ( a l ) . . . ( a n )  

where the last relation defines the n-particle correlation functions g(al)"'(an) ( t ) .  

R(t; {U")}), which is related to the functional A ( t ;  {U '"} )  by 
The irreducible correlation functions can be defined with the help of the functional 

R(t;  {U""}) =In A ( t ;  { U " ) } ) .  (3.5) 

By the functional differentiation of R, we obtain that for a spatially homogeneous 
system 

SR/Su'"'(R)~o = (3.6) 

(3.7) 

An hierarchy of evolution equations for the correlation functions can be easily 
obtained by functional differentiation of the evolution equations for the functionals 
A( t )  and a([), which in turn follow from the equations (2.2) and (3.1). However, in our 
problem we are interested only in a small, linear deviation of the irreducible correlation 
functions from their equilibrium forms, 
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which appears in the relations (2.36) and (2.37). One should note here that, in the 
problem of determination of the relaxation effect contribution from the formulae (2.36) 
and (2.37), we are interested not in the complete Smoluchowski equation (2.2) but only 
in the unperturbed form of this equation (2.34), with a suitable initial condition for the 
function P'( t  = 0). This initial condition can be treated formally as a perturbation of the 
equilibrium distribution Peq at time t = 0. It can be shown that the linearised evolution 
equations for the Sh( t )  functions can be obtained by functional differentiation of the 
equation 

(3.11) 

where the notation f ,  . , . denotes summation over the species index LY and integration 
over the appropriate variable of the function u i a l ,  e.g. 

$ f '" '=C J drf'"'(r). 
a 

(3.12) 

T(a)(P) is the transposition operator interchanging species indexes with the arguments 
of appropriate functions 

(3.13) T'""P' (a)i41 ( + I ,  r ( 1 3 ) )  = f ( P " " ' ( r ( 1 3 1  p1 

Sn'/8da) l o  = 0, 

f 7 )  

and we have (for a spatially homogeneous system) 

(3.14) 

By s'"', s ( m j ( 1 3 j  and S(")(@)(Y) we denote respectively one-, two- and three-particle 
components of the Smoluchowski operator: 

s y R )  = ( k T / p ) a 2 / a R 2 ,  (3.15) 

S(*"@'(R, R') = kTa/aR. T ( R  - R') . (a/dR' + ( l / k T )  Oia""(R - R'))  

1 _- a/aR. a+)(Pj(R -RI), (3.16) 

(3.17) 
5'"' 

s'a ) t P ) ( Y )  (R,  R',  R") = -a/aR. T ( R  - R ' )  . CD'')~)(R' - RI'). 
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The initial value of the functional a' is given by 

(3.18) 
a P  

where 

SS'"'(R) = ( Q ( " ) / f ( " ) ) & .  J/dR, (3.19) 

(3.20) 

represent perturbation caused by the external field. 
For spatially homogeneous solutions there is no perturbation of the one-particle 

distribution, and the two-particle correlation functions depend only on the relative 
distance between the ionic particles. Besides, the linear correction to the self-type 
correlation function Sh'"""'(t) vanishes for reasons of symmetry (see e.g. Ebeling et a1 
1978). Thus for the pair correlation function Sh'a"P'(t) we obtain, by double functional 
differentiation of (3.1 l), the following equation: 

(R, R') = Q'"&. T ( R  -R' )  . d / d R ,  ~S'""P' 

( t )  afih(")(Pj(') = (1 + T(")(P))(  S("jSh("j(Pj ( t )  + S'"""'6h'""P' 

4. The mean field approximation 

(3.21) 

In the previous section we derived the first equation of the hierarchy which determines 
the time evolution of irreducible correlation functions in spatially homogeneous 
solutions. Since, as is usual in sets of equations of the BBGKY type, the lower-order 
correlation functions are coupled with those of higher order, practical application of 
these equations requires the introduction of additional simplifications which would 
allow us to close the set on a manageable level. In this section we use what may be called 
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a mean field approximation, in which only the first equation of the hierarchy is kept and 
all higher-order perturbations of the irreducible correlation functions are assumed to be 
equal to zero, The mean field approximation is in fact the only one used so far in the 
hydrodynamic theory of transport processes in electrolyte solutions. The contribution 
of the relaxation effect to the conductivity is in this approximation given solely by the 
expression (2.36), and the pair irreducible correlation function is determined by the 
following equation 

atSh("'(@)(r, t )  = (1 + T ' " " @ ) ) [ p a / a r .  [ I - ( '" 'T(r ) ] (a /dr-  l / k T @ ' " " @ ' ( r ) )  
k T  

x Sh'""@'(r, t )  

(r' + rtr, t )  + h$"" (r' + r")"'P"'' ( r  - rl), t i l J .  ( Y ) ( P )  ( r  - rl)Sh'""S' + h e ,  

(4.1) 

This is an exact, linearised equation for the ionic irreducible pair correlation function, 
which is valid within the limits of the mean field approach for arbitrary concentrations 
and strengths of the ionic interaction. The initial condition is given by 

-(Q'"'- Q(@))E. T ( r ) .  a /arhg""(r) .  (4.2) 

The relative importance of the interaction terms in (4.1) can be most conveniently 
estimated if one introduces a dimensionless variable defining the unit of time scale, 7, by 

T-'= x2D = x 2 k T ( 1 / ( ' " ' +  1/("') 

1-1 = x. (4.4) 

(4.3) 

and the unit of the length scale, I ,  by 

Then it can be easily seen that every appearence of the Coulombic interaction potential 
is connected with the dimensionless coupling parameter 

A c o u l =  e 2 x / ( k T E o )  (4.5) 
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which is known as a plasma parameter. The hydrodynamic interaction contribution is 
manifested by the appearence of the Ossen tensor, which introduces another charac- 
teristic dimensionless coupling parameter 

AHydT = k T x / ( 8 q o D ) .  (4.6) 

The form of the coupling parameter related to the short-range direct interionic 
interaction depends on its assumed form. For example, for a short-range repulsive 
potential 

USR(r)  = E(u/r)",  n - 6 1 1 5 ,  (4.7) 

A S R = ~ ( a x ) " / k T ,  (4.8) 

while for the hard-core interaction, for which the interionic force can be assumed to be 

QHC(r) = kT?S(r - a ) ,  (4.9) 

where E and a are constants, the coupling parameter takes the form 

the coupling parameter is 

AH'= 1. (4.10) 

It should be also noted that every integration over superfluous variables leads to the 
additional parameter which is related both to the ionic concentration and the range of 
screened electric interaction This parameter 4, is defined by 

c$ = K3.  (4.1 1) 

For a binary 1 : 1 electrolyte at 298 K these parameters are roughly of order 

ACoU10C0*74~0'5, A Hydr Cc 0 .  16co", c$ a O . 5 2 ~ - O ' ~ ,  (4.12) 

Let us now consider a limiting conductance problem, assuming a short-range 
where c is the salt concentration in mol dm-3. 

potential of the form (4.7). In the limit c + 0, and taking into account that 
Coul 

lim ( fHyd:] = finite quantity, 
c + o  

we obtain the following asymptotic form of equation (4.1) 

5 aah'")(P)(r ,  t )  = (1 + T(rri(P))(g a2/ar2Sh'")'P' (r,  t )  

with the initial condition 

(4.13) 

(4.14) 

(4.15) 

which is exactly the well known equation of the Debye-Onsager-Falkenhagen theory 
used for the determination of the limiting conductance, which in this case reduces to the 
following expression: 
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where the asymptotic form of the pair correlation is determined by (4.14), and the 
linearised form of the equilibrium Debye-Hiickel pair distribution is used. 

The Onsager formula (4.16) is in good agreement with the experimental data at very 
low concentrations; however, already for values of the coupling parameters A - a 
clear deviation of the predicted and experimental values is observed, which indicates 
that some other effect should be taken into account. Most of the later attempts to 
improve the theory are based on the assumption that the excluded volume effects are 
responsible for the observed discrepancies. Usually the so-called restricted primitive 
model of interionic interaction was applied, in which excluded volume effects were 
taken into account through the introduction of the hard-core short-range interaction 
between the ionic particles (see e.g. Falkenhagen 1971, Falkenhagen et a1 1971, Fuoss 
et a1 1962, 1963, 1964, Pitts 1953, Pitts et a1 1969, 1970, Murphy et a1 1970). So far, 
only corrections to the limiting conductance have been calculated. In view of our 
general mean field equation (4. l ) ,  these attempts were not entirely consequent. 
Although we do not intend to consider here the specific model of electrolytic conduc- 
tance, it seems useful to present the equation which follows in this case from (4.1) in the 
infinite dilution limit. 

Assuming that 

= kTj$(r-a(""P) ) - (Q'"'Q'P'/Eor2)i 

where a("'(') is the repulsion distance, we obtain, in the limit of low concentrations, 

(4.17) 

- a/ar , c'"' dr '  T(r ' )  . @~$Y'(r')Sh'Y"P' (r - r', t )  
Y 

+ a / & .  1 c""T(r) . ] dr '  @$A(y)(r')Sh(Y)(") (r - r',t) 

- a/ar. 1 c(') 5 dr '  T(r') , @g&("(r - r')Sh'Y""'(r', t )  

Y 

Y 

-alar. 1 c(Y'c(s' dr" T(r ' )  . @@"(r") 
Y 3  

0 0 
+ h%Cq(r - r')Sh(a)(aj (r' + rl', t )  + h$g&(r' + r")Sh(Pj(Y) (r - r', t ) ] )  

(4.18) 

where h$g?(r) we denote the low-density, hard-core pair correlation function given by 
0 

0 

r) 'or)(P)(r) = -H(a'*"P' - 
heqHC 

where H ( x )  is the Heaviside step function. 

(4.19) 
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5. Summary and conclusions 

In the present paper we have given a general formulation of the quasihydrodynamic 
theory of electrolytic conductance in an isothermal, spatially homogeneous solution of 
strong electrolyte. Our formulation was based on the Brownian particle model of ionic 
conductance, with the multiparticle Smoluchowski equation playing the role of the 
fundamental equation of evolution for the ionic probability distribution function. By 
the application of the linear response method, we obtained new, convenient, cor- 
relation function type expressions for the contributions of the relaxation effect to the 
conductivity and dielectric permittivity of the electrolyte solution. We also found that 
the relaxation effect can be directly related to the linear perturbations of the non- 
equilibrium pair and triple irreducible correlation functions of the ionic particles. 
These functions can in principle be determined from the hierarchy of coupled equations 
of the BBGKY type. The hierarchy is infinite, and additional assumptions are neces- 
sary in order to close the set on a level which would be of some practical significance. 
Since the mean field approximation is of special importance for the theory, we 
discussed it in some detail, and proposed the first exact mean field equation for the 
time-dependent irreducible ionic pair correlation function. Our theory is applied here 
only to the problem of electrolytic conductance. It can, however, be easily generalised 
and modified to the problem of determination of other transport coefficients (e.g. 
intrinsic viscosity or thermal conductivity) of the electrolyte solution. Extensions to 
spatially inhomogeneous external fields and to nonlinear response are also possible. 
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